Braun group research from January 2008 is featured on the celebratory cover for the tenth anniversary of the launch of Nature Photonics.
January 2017 Cover

H. Zhang, H. Ning, J. Busbee, Z. Shen, C. Kiggins, Y. Huang, J. Eaves, J. Davis, T. Shi, Y.-T. Shao, J.-M. Zuo, X. Hong, Y. Chen, S. Wang, P. Wang, P. Sun, S. Xu, J. Liu, and P.V. Braun, Electroplating Lithium Transition Metal OxidesScience Advances, 3, e1602427 (2017). DOI: 10.1126/sciadv.1602427

Illinois News BureauCeramics.orgEurekAlert!C&E News

N.A. Krueger, A.L. Holsteen, S.-K. Kang, C. Ocier, W. Zhou, G. Mensing, J.A. Rogers, M.L. Brongersma and P.V. Braun, Porous silicon gradient refractive index micro-opticsNano Letters, 2016. DOI: 10.1021/acs.nanolett.6b02939

Illinois News BureauAAASU.S. DOE Office of SciencePhotonics MediaSPIE Newsroom

M. T. Barako, A. Sood, C. Zhang, J. Wang, T. Kodama, M. Asheghi, X. Zheng, P.V. Braun, K. Goodson, Quasi-ballistic Electronic Thermal Conduction in Metal Inverse OpalsNano Letters, 2016. DOI: 10.1021/acs.nanolett.6b00468

10 years in images
Nature Nanotechnology
Check it out!

Nat. Nanotech. 6, 277–281 (2011)
Bicontinuous electrodes
Nickel inverse opal forms one of the two phases of a battery cathode. Together with an electrochemically active phase, this electrode architecture allows for a rapid ion and electron exchange and transport for fast recharging batteries.

S.-K. Kang, R.KJ. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. gamble, H. Cheng, S. Yu, Z. Liu, J.G. McCall, M. Stephens, H. Ying, J. Kim, G. Park, R.C. Webb, C.H. Lee, S. Chung, D.S. Wie, A.D. Gujar, B. Vemulapalli, A.H. Kim, K-M. Lee, J. Cheng, Y. Huang, P.V. Braun, W.Z. Ray and J.A. Rogers, Bioresorbable Silicon Sensors for the Brain with Implantable Wireless OperationNature, 530, 71-76 (2016). DOI:10.1038/nature16492

Many news agencies highlight our work on bioresorbable silicon electronic interfaces to the brain, published in Nature; CNN, IEEE Spectrum, Discover, New Scientist, United Press International, Chemical and Engineering News, German Public Radio, and many others, January, 2016.

Illinois News BureauCNNScience DailyC&EN

News-Gazette article featuring Paul Braun – Wired In

Congratulations to former Braun group member Jinyun Liu!  His image was selected as a Finalist of the 2016 SCS Science Image Challenge at the University of Illinois!


 J. Liu, J. Wang, J. Kim, H. Ning, Z. Pan, S. Kelly, E. Epstein, X.-J. Huang, J. Liu and P.V. Braun, High Full-Electrode Basis Capacity Template-Free Three-Dimensional Nanocomposite Secondary Battery AnodesSmall, 11, 6265-6271 (2015). DOI: 10.1002/smll.201502538

H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu, J. Wang, J.A. Rogers, W.P. King and P.V. Braun, Holographic Patterning of High-Performance on Chip 3-D Lithium Ion BatteriesPNAS (2015). DOI: 10.1073/pnas.1423889112

Illinois News BureauThe EngineerC&EN plus “News of the Week”Kurzweilai.netarstechnica ECS BlogSlash GearEngineering.com3DPrint.com3Ders.orgExtremeTechNewsKillerDesign Products & ApplicationsThe Register

Congratulations to Braun group undergraduates Nathan Reed and Paige DeGarmo, poster award winners at the East Central Illinois Local ACS Section Undergraduate Research Conference!  Nate won the “ECI Local Section Outstanding Poster Award” and Paige won the “Women Chemists Committee Outstanding Poster and Presentation Award.”

J. Kim, L.K. Aagesen, J.H. Choi, J. Choi, H.S. Kim, J. Liu, C.-R. Cho, J.G. Kang, A. Ramazani, K. Thornton and P.V. Braun, Template-Directed Directionally Solidified Three-Dimensionally Mesostructured AgCl-KCl Eutectic Photonic CrystalsAdvanced Materials, 27, 4551-4559 (2015). DOI: 10.1002/adma.201502265

Template‐Directed Directionally Solidified 3D Mesostruct

C. Zhang, A. Sitt, H.-J. Koo, K. Waynant, H. Hess, B. Pate and P.V. Braun, Autonomic Molecular Transport by Polymers Containing Programmed Chemical Potential GradientsJACS, 137, 5066-5073 (2015). DOI: 10.1021/jacs.5b00240

JACS Spotlight

C. Zhang, G.G. Cano, P.V. Braun, Linear and Fast Hydrogel Glucose Sensor Materials Enabled by Volume Resetting AgentsAdvanced Materials, 26, 5678-5683 (2014). DOI: 10.1002/adma.201401710. 

(e) Science NewsScience DailyIllinois News BureauHeadlines & Global NewsGizmagNews-Medical.netBioOptics

J. Cho, M.D. Losego, H.G. Zhang, H. Kim, J. Zuo, I. Petrov, D.G. Cahill and P.V. Braun, Electrochemically Tunable Thermal Conductivity of Lithium Cobalt OxideNature Communications, 5, 4035 (2014). DOI: 10.1038/ncomms5035


K.A. Arpin, M.D. Losego, A.N. Cloud, H. Ning, J. Mallek, N.P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G.N. Parsons, G.S. Girolami, J.R. Abelson, S. Fan and P.V. Braun, Three-Dimensional Self-Assembled Photonic Crystals with High Temperature Stability for Thermal Emission Modification, Nature Communications, 4 (2013). DOI: 10.1038/ncomms3630

MotorTrendStandford UniversityScience CodexThe American Ceramic SocietyMaterials 360

J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun and W. King: High Power Lithium Ion Micro Batteries from Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes, Nature Communications, 4, 1732 (2013). DOI: 10.1038/ncomms2747 


S. Odom, S. Chayanupatkul, B.J. Blaiszik, O. Zhao, A.C. Jackson, P.V. Braun, N.R. Sottos, S.R. White and J.S. Moore, A Self-Healing Conductive InkAdvanced Materials, 24, 2578-2581 (2012). DOI: 10.1002/adma.201200196 

M. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill and P.V. Braun: Effects of Chemical Bonding on Heat Transport Across InterfacesNature Materials, 11, 502-506 (2012). DOI: 10.1038/NMAT3303

Ceramic Tech TodayScienceDailyIllinois News BureauNPR Audio Clip

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P.V. Braun and H. Giessen: Hole-Mask Colloidal Nanolithography for Large-Area Low-Cost Metamaterials and Antenna-Enhanced SEIRA SubstratesACS Nano, 6, 979-985 (2012). DOI: 10.1021/nn2047982

J. Zhao, C. Zhang, P.V. Braun and H. Giessen, Large-area low-cost Plasmonic nanostructures in the near infrared region for Fano resonant sensing, Advanced Optical Materials, 24, OP247-OP252 (2012). DOI: 10.1002/adma.201202109

Materials Views

Congratulations to Katilin Tyler, recipient of a Mavis Future Faculty Fellowship!

Congratulations to Chunjie Zhang, winner of the Materials Research Society Graduate Student Gold Award for his paper “Hydrogel Sensor Materials for Continuous Glucose Monitoring,” which was presented at the MRS Fall Meeting in Boston, MA.

Press related to Chunjie Zhang’s award (see page 4):

Congratulations to James Pikul, winner of the Materials Research Society Graduate Student Gold Award for his paper “High Power Primary Lithium Ion Micro Batteries,” which was presented at the MRS Fall Meeting in Boston, MA.

July 2011, Cover of Nature Materials, Vol. 10
E.C. Nelson, N. Dias, K. Bassett, S. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. Rogers, J. Coleman, X. Li and P.V. Braun: Epitaxial growth of three-dimensionally architectured optoelectronic devicesNature Materials (2011).

Materials Today, Technology Review by MITScience DailyPhotonics.comR&D Mag

Podcast with Materials Today – “Optoelectronic photonic devices”

 A. Radke, T. Gissibl, T. Klotzbucher, P. V. Braun and H. Giessen: Three-Dimensional Bi-Chiral Plasmonic Crystals Fabricated by Direct Laser Writing and Electroless Silver PlatingAdvanced Materials, 23, 3018-3021 (2011). DOI: 10.1002/adma.201100543.

H. Zhang, X. Yu and P.V. Braun: Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodesNature Nanotechnology, 6, 277-281 (2011). DOI: 10.1038/nnano.2011.38 (supplementary information)

ScienceWGN TVScience DailyGreen Car CongressCHEMPHYSCHEMSpiegel OnlineHybrid.CZIllinois News BureauThe EconomistNews-Gazette

Paul Braun is interviewed by the BBC – click to listen!

Paul Braun is interviewed by German Radio 

WCIA Channel 3 News Report

Podcast with Materials Today – click to listen!

The research on Mechanochemically Active Polymers
(Mechanophores) by Nancy Sottos, Paul Braun, Jeff
Moore and Scott White was featured in the Popular
Science list of “10 Tech Concepts You Need to Know for 2011”

Popular Mechanics

April 2010, Paul Braun selected for Humboldt Foundation Award

K.A. Arpin, A. Mihi, H.T. Johnson, A.J. Baca, J.A. Rogers, J.A. Lewis and P.V. Braun: Multidimensional Architectures for Functional Optical DevicesAdvanced Materials, 22, 1084-1101 (2010). DOI: 10.1002/adma.200904096

Parachute cords, climbing ropes, and smart coatings for bridges that change color when overstressed are several possible uses for force-sensitive polymers being developed by researchers at the University of Illinois.

U of I News Bureau
Mechanochemically Active Polymers Web Page

February 2009, Frontispiece of Advanced Materials, Vol. 21 No.6
Dramatic reduction in corrosion of a steel plate coated with a self-healing coating (right) as compared to a conventional coating is demonstrated. Two samples were scratched and placed in 5% NaCl for 5 days. The background is an optical image (2× magnification), in the foreground is an SEM image of the scratch. In the self-healing sample, the scratch has almost completely self-healed, while in the control sample, the scratch remains all the way down to the substrate.

Self-healing Polymer Coatings
New polymer coatings prevent corrosion, even when scratched (see press release)

January 2009, Cover of Advanced Materials, Vol. 21 No.1
Here we report the use of direct laser writing topattern porous 3D structures from photo-responsive colloidal building blocks. Upon 2-photon exposure, the colloids become highly attractive, enabling localized control of aggregation behavior. 3D structures composed of porous walls are harvested by writing intoa colloidal sediment of these particles, followed by rinsing away unexposed colloidal species. Applications may include microfluidics, and studies of porous media, cellular growth and signaling, and colloidal physics. Cover art by Steven Eisenmann of the Beckman Institute VMIL.

Direct Laser Writing of Photoresponsive Colloids for
Microscale Patterning of 3D Porous Structures 

January 2008, Cover of Nature Photonics, Vol.2 No.1
Photonic crystals, artificially engineered nanoscale structures that can manipulate the flow of light, show great promise for building sophisticated optical circuitry that can route, filter, store or suppress optical signals. However, fabricating such circuitry presents a great challenge as defects need to be carefully incorporated into the photonic-crystal structure with great precision. Although this has been accomplished for two-dimensional designs that confine light in a plane, it is still an ongoing challenge for so-called complete-bandgap materials, where the defects need to be embedded into a three-dimensional structure. In this issue, Paul Braun and colleagues report the introduction of defects into a silicon three-dimensional photonic crystal by using a technique called two-photon polymerization. The result is waveguides that guide near-infrared light around sharp corners.
Article p52,News & Views p9UIUC Press Release

Jeong-Ho Park and Paul V. Braun: Coaxial Electrospinning of Self-Healing Coatings, Advanced Materials (2009).

Nature Research HighlightsNanowerk

Beckman Institute for Advanced Science and Technology – featuring an article with Paul V. Braun: SYNERGY Fall 2009

Mary M. Caruso, Stuart R. Schelkopf, Aaron C. Jackson, Alexandra M. Landry, Paul V. Braun and Jeffrey S. Moore: Microcapsules Containing Suspensions of Carbon Nanotubes, Journal of Materials Chemistry, 19, 6093 (2009).

Technology Review by MITMaterials WorldCPUChemical Science

Jhy-Tsung Lee, Matthew C. George, Jeffrey S. Moore and Paul V. Braun: Multiphoton Writing of Three-Dimensional Fluidic Channels within a Porous Matrix, Journal of the American Chemical Society (2009).

Chemistry World

Soo Hyoun Cho, Scott R. White and Paul V. Braun: Self-Healing Polymer Coatings, Advanced Materials, 21, 645-649 (2009).

tce todayMaterials TodayOne IndiaRed OrbitThe Post ChronicleThandian NewsTimes of the InternetC&ENUPI.comDiscovery ChannelMRS BulletinEurekaTechnology TodayInnovations ReportIllinois News Bureau

Stephanie A. Rinne, Florencio García-Santamaría and Paul V. Braun : Embedded cavities and waveguides in three-dimensional silicon photonic crystals, Nature Photonics, 2, 52-56 (2008).

optics.orgphysicsworld.comIllinois News BureauNanotechweb.orgTelepolisc’tLaser Focus WorldNewScientistABC News

Beckman Institute researchers, led by Paul Braun and Ben Grosser, receive $1.99 million National Science Foundation MRI award to acquire nano-CT instrument (see press release)

June 2007, Cover of Advanced Materials, Vol. 19, Issue 12
Germanium inverse woodpile 3D photonic crystals with a large (25%) photonic band gap in the infrared (background image) were fabricated through a multistep replication procedure. A polymer scaffold was first created by direct-write assembly, followed by the conformal growth of oxide and semiconductor layers, and removal of the polymer and oxide (foreground), …as reported on p. 1567 by F. García-Santamaría, M. Xu, V. Lousse, S. Fan, P. V. Braun,
and J. A. Lewis.

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun: Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals, Advanced Materials, 19, 1689-1692 (2007).

Advances in Advance 

F. García-Santamaría, M. Xu, V. Lousse, S. Fan, P. V. Braun and J. A. Lewis: Germanium Inverse Woodpile Structure with a large photonic band gap, Advanced Materials, 19, 1567-1570, 2007.

Advances in AdvanceIllinois News BureauInnovations ReportSemiconductornanotechwire.comPhysorg.comPSS

Researchers at the U. of I. have built an inverse woodpile structure of germanium, a material with a higher refractive index than silicon.

November 2006, Cover of Advanced Functional Materials, Vol. 16, Issue 17
The direct ink writing of three-dimensional functional materials is detailed in the Feature Article by Lewis on p. 2193. The left side of the cover image displays schematic images that show the conversion of a direct-write polymer woodpile to a silicon hollow-woodpile structure. The 3 × 3 image matrix showcases the resulting silicon photonic crystal (center) surrounded by a higher-magnification view of a representative hollow silicon feature (ca. 1 m in diameter). The figure was prepared by F. Garcia-Santamaria, G. M. Gratson, and P. V. Braun.

The ability to pattern materials in three dimensions is critical for several technological applications, including composites, microfluidics, photonics, and tissue engineering. Direct-write assembly allows one to design and rapidly fabricate materials in complex 3D shapes without the need for expensive tooling, dies, or lithographic masks. Here, recent advances in direct ink writing are reviewed with an emphasis on the push towards finer feature sizes. Opportunities and challenges associated with direct ink writing are also highlighted.

S. H. Cho, S. R. White, and P. V. Braun: Self-healing Polymer Coatings, abstract A3.54, Materials Research Society Fall Meeting, Boston, MA, December 2006. 

Science News

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill: Thermal transport in Au-core polymer-shell nanoparticles, Nano Letters, 5, 531-535 (2005).

Nanotechnology News NetworkNanotechnology NowNanotechweb.orgNature

June 2004, Cover of Langmuir, Vol. 20, Issue 13
Cover illustration by Wonmok Lee and Paul V. Braun showing to the left a scanning electron microscope image of a substrate patterned with a periodic array of dimples formed through focused ion beam lithography and to the right a laser scanning confocal microscope cross section of a 3-D colloidal crystal formed by gravity-driven sedimentation from a binary mixture of 1.18 m diameter colloidal microspheres and 6 nm diameter highly charged nanoparticles onto this patterned substrate. After microsphere settling, the nanoparticle solution surrounding the colloidal crystal was gelled in situ by introducing ammonia vapor, which increased the pH and enabled drying with minimal microsphere rearrangement. The confocal image shown here was generated by infilling the dried colloidal crystal with an index-matched fluorescent dye solution prior to imaging. These colloidal crystals have very low defect densities and may be suitable for use as photonic crystals and as templates for photonic band gap materials. The dimple pitch and the volume fraction of microspheres in solution were found to strongly impact the quality of the resulting colloidal crystal. For more information see “Nanoparticle-Mediated Epitaxial Assembly of Colloidal Crystals on Patterned Substrates” by Wonmok Lee, Angel Chan, Michael A. Bevan, Jennifer A. Lewis, and Paul V. Braun on pages 5262-5270 of this issue. Copyright 2004 American Chemical Society

Langmuir Cover

H. Liang, T. E. Angelini, J.Ho, P. V. Braun and G. C. L. Wong: Molecular imprinting of biomineralized CdS nanostructures: Crystallographic control using self-assembled DNA-membrane templates, Journal of the American Chemical Society125, 11786-11787 (2003).

CNEChemical & Engineering News

W. Lee, S. A. Pruzinsky, and P. V. Braun: Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals, Advanced Materials14, 271-274 (2002).

Chemical & Engineering NewsScienceNatureMRS BulletinPhotonicsTechnology Reviewc’tEE TimesInformationweek.comIllinois News Bureau

“Tiny bubbles, sticky solutions,”The Toronto Star, February 16, 2004

View the complete Photonische Kristalle: Halbleiter für Licht story from c’t 26/2003